

Motion In a Plane

Q.No.1:

A projectile is given an initial velocity of $(\hat{i}+2\hat{j})$ m/s, where \hat{i} is along the ground and \hat{j} is along the vertical. If g=10 m/s², the equation of its trajectory is:

JEE 2013

A.
$$y = x - 5x^2$$

B.
$$y = 2x - 5x^2$$

C.
$$4y = 2x - 5x^2$$

D.
$$4y = 2x - 25x^2$$

Q.No.2: A particle is moving with a uniform speed in a circular orbit of radius R in a central force inversely proportional to the nth power of R. If the period of rotation of the particle is T, then:

JEE 2018

A.
$$T \propto R^{(n+1)/2}$$

B.
$$T \propto R^{n/2}$$

C. T
$$\propto$$
 R^{3/2} for any n.

D.
$$T \propto R^{\frac{n}{2}+1}$$

Q.No.3: Two guns A and B can fire bullets at speeds 1 km/s and 2 km/s respectively. From a point on a horizontal ground, they are fired in all possible directions. The ratio of maximum areas covered by the bullets fired by the two guns, on the ground is:

JEE 2019

A. 1:16

B. 1:2

C. 1:4

D. 1 : 8

Q.No.4: A body is projected at t=0 with a velocity 10 ms^{-1} at an angle of 60° with the horizontal. The radius of curvature of its trajectory at t=1 s is R. Neglecting air resistance and taking acceleration due to gravity $g=10 \text{ ms}^{-2}$, the value of R is:

- **A.** 10.3 m
- **B.** 2.8 m
- **C.** 2.5 m
- **D.** 5.1 m

Q.No.5: A particle moves from the point $\left(2.0\hat{i}+4.0\hat{j}\right)$ m, at t=0, with an initial velocity $\left(5.0\hat{i}+4.0\hat{j}\right)$ ms $^{-1}$. It is acted upon by a constant force which produces a constant acceleration $\left(4.0\hat{i}+4.0\hat{j}\right)$ ms $^{-2}$.

What is the distance of the particle from the origin at time 2 s? **JEE 2019**

- **A.** 15 m
- B. $20\sqrt{2} \text{ m}$
- **C.** 5 m
- **D.** $10\sqrt{2} \text{ m}$

Q.No.6: A particle is moving along a circular path with a constant speed of 10 ms⁻¹. What is the magnitude of the change in velocity of the particle, when it moves through an angle of 60° around the centre of the circle? **JEE 2019**

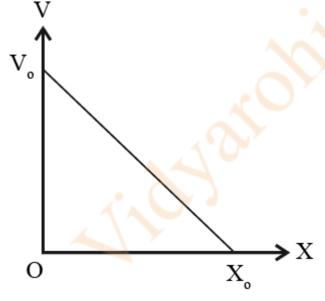
- **A.** $10\sqrt{3} \text{ m/s}$
- **B.** zero
- **C.** $10\sqrt{2} \text{ m/s}$
- **D.** 10 m/s

Q.No.7: The trajectory of a projectile in a vertical plane is $y=\alpha x-\beta x^2$, where α and β are constants and x & y are respectively the horizontal and vertical distances of the projectile from the point of projection. The angle of projection θ and the maximum height attained H are respectively given by

A.
$$\tan^{-1} \alpha$$
, $\frac{4\alpha^2}{\beta}$

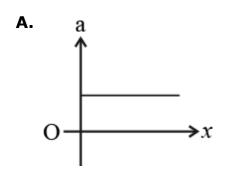
JEE 2021

- **B.** $\tan^{-1}\beta$, $\frac{\alpha^2}{2\beta}$
- **C.** $\tan^{-1}\left(\frac{\beta}{\alpha}\right), \frac{\alpha^2}{\beta}$
- D. $an^{-1} lpha, \ rac{lpha^2}{4eta}$

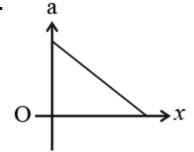

Q.No.8: A rubber ball is released from a height of 5 m above the floor. It bounces back repeatedly, always rising to $\frac{81}{100}$ of the height through which it falls. Find the average speed of the ball.

 $(Take g = 10 ms^{-2})$

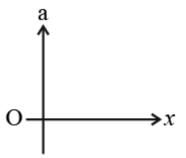
JEE 2021

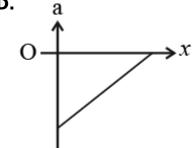

- **A.** 3.50 ms⁻¹
- **B.** 2.0 ms⁻¹
- **C.** 2.50 ms⁻¹
- **D.** 3.0 ms⁻¹

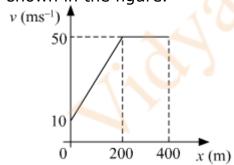
Q.No.9: The velocity-displacement graph of a particle is shown in the figure.

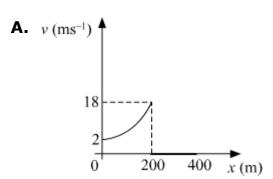


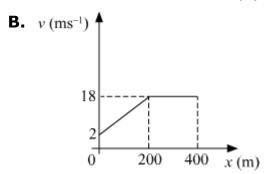
The acceleration-displacement graph of the same particle is represented by:

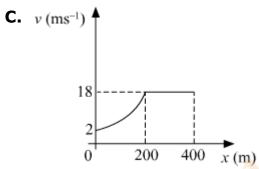

JEE 2021

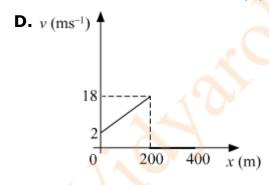

В.


C.




D.




Q.No.10: The velocity-displacement graph describing the motion of a bicycle is shown in the figure.

